
Pico � A Language For Composing Digital Images

Gerard J. Holzmann

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Pico is a small expression language for picture compositions. It can be used either interac-
tively with a display or stand alone as a picture file editor. The followingpico script, for
instance, turns an arbitrary digitized image stored in a filein upside down, rotates it by 90
degrees, and writes its negative into a fileout :

$ pico
1: new = Z-$in[X-y,x]
2: w out
3: q
$

Numerous examples ofpico transformations of pictures are included throughout this vol-
ume.

1. Black&White Images

The pictures that can be manipulated bypico
are stored as regular files in the picture file format
described inpicfile(5). The picture editor is most con-
veniently used interactively with a Metheus frame
buffer display. The result of picture transformations
is then directly visible and can be used to correct or
enhance the mistakes that one is bound to make.

New and Old

Assuming that you want to work interactively
and have access to one of the Metheus frame buffers,
e.g. onpipe , a session withpico can be started by
typing

$ pico -m N
b&w, 512x512 pel, Metheus display
1:

whereN is the device number of the frame buffer to
be used. By default,N is zero and opens/dev/om0 .
Also by default the size of the workarea is 512x512
pixels. If you need to work with larger images, you
can override the default by explicitly setting a differ-
ent window width and height, for instance:

$ pico -m5 -w1024 -h1024
b&w, 1024x1024 pel, Metheus display
1:

The maximum size image that the Metheus frame
buffer can display is 1280x1024 pixels.

The number followed by a colon in the example
above ispico’s prompt for commands.

The result of the last edit operation (initially an
all black image) is accessible under the predefined
nameold , and the destination of the image transfor-
mations is known asnew. To quickly get a picture
into the workbuffer, you can use the commandget
followed by the name of the file with the image.

1: get "pjw"

The most frequently used command inpico is x , short
for execute . To make a black&white negative from
the current picture the command would be:

2: x new=Z-old

where Z is a predefined constant with the value of
maximum white (255). By default the transformation
is applied to every pixel on the screen.

Assume we have two image files with portraits.
We can open these files by usingget , or we can
specify them on thepico command line, as follows,

- 2 -

using/dev/om5 :

$ pico -m5 ./face/rob ./face/pjw
b&w, 512x512 pel, Metheus display
1:

We can create a new image, for instance, by averaging
the two faces:

$ pico -m5 ./face/rob ./face/pjw
b&w, 512x512 pel, Metheus display
1: x new=($rob+$pjw)/2
2:

The transformation is written as an assignment of an
expression to the destinationnew. Names preceded
by a dollar sign refer to picture files, for instance as
specified on the command line. A long name such as
./face/rob can be abbreviated to its base name
rob (the part following the last slash). Not all file
names have to be provided on the command line
though. We can alsoappend a new filedoug , with-
out reading it, by typing:

2: a "doug"

The double quotes are necessary. They avoid confu-
sion when, for instance,/ symbols are part of the file-
name. We can check which files are currently open
by typingf :

3: f
$0: old color resident
$1: rob b&w resident
$2: pjw b&w resident
$3: doug b&w absent

The numbers in the first column serve as a shorthand
for the file names. Typing$1 therefore is equivalent
to typing $rob . We will use both notations$1 and
$rob below. The first line$0 is a shorthand forold
and refers to the workarea (the screen in interactive
usage).

We have a black and white image on the screen
that is an average of the two filesrob andpjw . To
seerob separately we could type:

4: x new=$1

but that is hardly an inspiring procedure. Let’s just
take the left half or rob’s face combined with the right
half of peter’s:

5: x new=(x<256)?$rob:$pjw

or to make a mirror image:

5: x new=(x<256)?$rob[x,y]:$rob[X-x,y]

The variablex used in the expression is predefined.
Don’t confuse it with the firstx on the command line
which identifies the type of command to be executed.
The variablex gives the current x-coordinate of a

pixel during transformations. Since in this case 512
pixels fit on one scan line, a pixel in the middle of the
screen has anx -coordinate of 256. The maximum
value ofx is given by a predefined variableX. X/2 ,
therefore, is a safer way to specify the middle of a
scan line.

The expression above is a conditional of the
form:

condition ? iftrue : iffalse

For every screen position where the condition holds
the iftrue part of the expression applies and every-
where else theiffalsepart applies. Another predefined
variable of this type isy (the y-coordinate of the desti-
nation). The maximumy value is calledY. Since$0
refers to the screen we can turn the picture on the
screen upside down by typing:

6: x new = $0[x, Y-y]

All pixels in the black&white picture are internally
represented by a value in the range 0..255, where 0
means black and 255 means white. To reverse an
image, therefore it would suffice to subtract the cur-
rent value of each pixel from its maximum value 255,
which is stored in constantZ. Getting very bold we
can turn the picture on its side, and make it negative
by saying:

8: x new = 255 - old[y,511-x]

or, slightly more abstract

9: x new = Z - old[y,Y-x]

Note that we swapped x and y to turn the picture on
its side. Nothing can stop us now:

10: x new=(x<X/3)?$1:(x>X*2/3)?$2:
3*((x-X/3)*$2+(X*2/3-x)*$1)/X

fades rob slowly into pjw . (We have used to
break the line into two pieces for lay-out purposes.
When usingpico, it should be typed as one complete
line.) Actually this last transformation is easier to
read as a littlepico program. To see how this works,
and what the defaults in the above expression are, the
above expression could be typed as:

- 3 -

10: x {
int L, R

L = X/3; R = X*2/3

for (y = 0; y < Y; y++)
for (x = 0; x < X; x++)
{ if (x < L)

new[x,y] = $1
else if (x > R)

new[x,y] = $2
else

new[x,y] = 3*((x-L)*
$2+(R-x)*$1)/X

}
}

There fewer defaults here, though an assignment to
new is still interpreted as a parallel assignment to all
three color channels in the picture. You can override
also these defaults by making the program still more
explicit, for instance by using the suffixesred , grn ,
and blu to access color channels separately:
new[x,y].red , new[x,y].grn , and
new[x,y].blu . To see the effect you need to set
the workbuffer to color mode first with the command
color . (You go back to the default black&white
mode with the commandnocolor).

All normal arithmetic operators from C are
available. The^ operator, for instance, makes an
exclusive orof its operands. Thus,

11: x new=x^y^$rob

is a particularly striking effect, and

13: x new = $rob +(Z - $rob[x+2, y+2])

is an attempt to make a relief.

There is no range checking on explicit or
implicit array indexing. The use ofx+2 in the last
expression is therefore risky and is best protected with
a conditional:

13: x new=$rob+(Z-(x<509 && y<509)?
$rob[x+2,y+2]:Z)

or more conveniently with the builtinsxclamp and
yclamp :

14: x new=$rob+(Z-$rob[xclamp(x+2),
yclamp(y+2)])

Another promising attempt to make a core dump
would be to type something like

14: x new=$rob[x*y, x/y]

2. Color Images

A complete picture specifies pixel values for
each of three separate color channels: red, green, and
blue. When the editor is used in black&white mode
only the red channel is used. When a black&white
picture is converted to color mode, all three channels
are made equal. The omission of a channel suffix to
old , new or a file name is similarly interpreted to
mean that a transformation expression will apply
equally to all three color channels. By specifying an
explicit suffix red , grn , or blu , however, we can
write each channel separately. So:

14: color
15: x new.red=$rob
16: x new.grn=$rob
17: x new.blu=255-$rob

will write rob on the red and green channels, and its
negative on the blue channel. Ifrob is a
black&white picture then typing$rob is, of course,
equivalent to typing$rob.red . We could also have
combined the first two lines in a chain assignment:

18: x new.red=new.grn=$rob

We can also write a separate value to each channel by
usingcomposites . A color composite is written as
a comma separated list of three values, enclosed in
square brackets:

19: x new.rgb=[$rob,$rob,Z-$rob]

The channels are addressed by the three fields of the
composite in the order: [red, green, blue]. Omitting to
specify a composite when anrgb destination is used
typically results in only the red channel being written.
As expected,

20: x new.rgb=[old.grn,old.blu,old.red]

rotates the colors of the picture. And, of course, you
can freely combine the color suffixes with array
indexing: $rob.blu is just a shorthand for
$rob[x, y].blu where the variablesx , and y
can be replaced by just any monstrous C-style expres-
sion.

3. The Color Maps

When working interactively, the color map in
the Metheus frame buffer display can be set with one
of the commandscmap (all channels),cmap.red ,
orcmap.grn , cmap.blu . The color map is a map-
ping table that can arbitrarily map pixel brightness
values in the range 0..255 to other brightness values,
within the same range 0..255. The update, however,
only happens on the screen and is not stored when the
image file is written. The variablei is used to index

- 4 -

the color map. For instance:

21: x cmap = Z-i

will very quickly make a negative, and

22: x cmap = i

turns the picture back to normal. To fake color in a
black and white image you can try:

23: x cmap.red = (i<=85)?i:0
24: x cmap.grn = (i>85 && i<170)?i:0
25: x cmap.blu = (i>=170)?i:0

Remember that changing the color map only changes
the appearance of the picture on the screen, not its
definition in memory.

4. Read, Write, and Windows

The append command, to add files to the list
of dollar arguments was discussed before. Using the
commandget instead ofa will also put the file into
$0, that is on the screen. To save the current state of
the display in a file, use:

26: w filename

A raw black&white picture file, without the picture
file header, can be written by usingw - instead ofw
(for instance when dumping a file to be processed by
software uneducated in picture file headers). The size
of the file written conforms to the current window size
of the editor (see also below). To close a no longer
used file and free up some memory for others, say:

27: d doug

or

27: d $1

giving the file’s base name or its dollar number. To
restrict the updates to a window on the screen you can
set:

30: window 10 100 200 300

which makes a window with origin at (x,y) =
(10,100), 200 pixels wide and 300 pixels deep. And,
if you really want to exitpico you can type a control-
D or resort to thequit command:

32: q

5. Programs

As shown in one of the examples above, it is
possible to write smallpico programs for the more
difficult transformations that cannot be handled by the
defaults. The control structure for thepico programs
is again stolen from C.

A pico program starts with a left curly brace{
followed by zero or more declarations of (long) inte-
gers or arrays. For instance,

33: x {
int a, b; array ken[100]

...

Note carefully that the left curly brace turns off the
default control flow over all the pixels in a picture; the
control flow in a program must be specified explicitly.
The above program fragment declares two local inte-
gersa and b which by default will be initialized to
zero, and an array of 100 (long) integers namedken ,
also initialized to zeros. To initialize it to another
value, use constants:

int a = 9

Statements can either be separated by newlines or by
explicit semicolons. Here then is a list of valid types
of statements:

lvalue = expr
if (expr) stmnt
if (expr) stmnt else stmnt
for (expr; expr; expr) stmnt
while (expr) stmnt
do stmnt while (expr)
label: stmnt
goto label
{ stmnt }

An lvalue is an explicitly declared local variable or
array element, one of the predefined variablesx , or y ,
or a picture element. A picture element can again be a
file name such as$doug with a default selection of
the pixel inside it,$doug[x,y] , or it can be more
elaborate as in$doug[x/2, y<<1].red . The
destination of the transformation, is again referred to
by the keywordnew, but this time it needs an explicit
array indexing. The equivalent of

34: x new=old[y,x]

to turn the picture on its side, can be written as apico
program:

35: x {
for (y = 0; y < 512; y++)
for (x = 0; x < 512; x++)

new[x,y] = old[y,x]
}

Note that also the control flow must be explicit. Typ-
ing only

36: x { new[x,y] = old[y,x] }

would use the initial (zero) values ofx and y and
merely assignnew[0,0] = old[0,0] .

- 5 -

6. Array Indexing and Control Flow Defaults

One more word about defaults.Pico tries to be
smart about assigning types to values. When a single
rvalue is needed and a color composite is available
and average of the color channels is the default, for
instance:

oldbecomes
(old[x,y].red+old[x,y].grn+old[x,y].blu)/3.

If on the other hand a value is available and a compos-
ite is needed the value will be replicated into a fake
composite. To override the defaults assignments can
of course always be made more explicit. Normal
cases should work as expected, for instance, by
default:

new = old

truly means

new.red=old.red;
new.grn=old.grn;
new.blu=old.blu

7. Procedures

There is a facility inpico to declare named seg-
ments of code and use these as functions or proce-
dures. As an example, the following command
declares a proceduredoit that makes a histogram of
a window of pixels on the screen. It is equivalent to
the sequence:

37: window a b w d
38: x { global array histog[256]; }
39: x histo[old]++
40: window 0 0 512 512

In a procedure this is written as:

37: def doit(a, b, w, d) {
global array histog[256]

for (y = a; y < a+w; y++)
for (x = b; x < b+d; x++)

histog[old[x,y]]++
}

The declaration prefixglobal extends the scope of
an array so that it can be referred to in subsequent pro-
cedures, programs or expressions. We can now call
the procedure and use the histogram to arbitrarily
change the color map:

38: x { doit(0,0,512,512); }
39: x cmap = histog[i]%256

Or more usefully, to calculate and apply a simple his-
togram equalization:

40: x {
int ave, i, j, R, L, Hint;
global array eqlz[256]

for (i = ave = 0; i < 256; i++)
ave += histog[i];

ave /= 256

for (i = R = Hint = 0; i < 256; i++)
{ L = R

Hint += histog[i]
while (Hint > ave)
{ Hint -= ave

R++
}
j = (L+R)/2
eqlz[i] = (j>255)?255:j

}
}
41: x new=eqlz[old]

Whenpico starts up it reads a small set of library pro-
cedures by simulating anr command (see Table 1).
These definitions are stored in the file
/usr/lib/pico/defines . The builtins listed in
Table 2 can be used inpico programs andpico proce-
dures.

8. Non-Interactive Use ofPico

When pico is used without having access to a
frame buffer all commands will still work. To check
the result of executing commands it can be convenient
to write what would have been the current screen
image into a file with thew command and view it in
anothermux-window on the 5620 (or 630) terminal
with a command likeflicks. For instance, in one win-
dow the session can be:

$ pico rob pjw
1: nocolor
2: x new=($rob*$pjw)/255
3: w - junk
4:

While in another window the file is displayed with
flicks, as follows:

$ flicks -em junk

9. See Also

More examples on how to usepico, and on its
internal structure, can be found in:reference(pico
%no_cite)reference(digital darkroom %no_cite)

reference_placement

- 6 -

COMMAND__

a [x y w d] file append file with optional offset/dimensions
d basename/$n delete file
h file read header information from file(s)
r file read (library) command file
w [-] file write file or window with or without a header format: default =pico

header, � means no header___
nocolor update & display only 1 channel
color update & display all 3 channels___
window x y w d restrict workarea to this window___
get [x y w d] file read file contents intoold
get $n refreshold with an already opened file___
f show mounted files
show [name] show symbol information (values)
functions show functions___
def name { pprog } define a function
x expr execute expr in default loop
x { pprog } executepicoprogram___
q quit___

File names containing nonalphanumeric characters (period, slash) must be enclosed in double quotes.

Table 1.Command Summary

printf(string, args) recognizes only:%d, %s, \n , \t
x_cart(radius, angle) convert radius and angle (degrees: 0..360) into x_coordinate
y_cart(radius, angle) convert radius and angle (degrees: 0..360) into y_coordinate
X_cart(r,a),Y_cart(r,a) same as [xy]_cart, but expectsanglein centidegrees
r_polar(x,y) convertx,ycoordinate into radius
a_polar(x,y) angle returned is in degrees: 0..360, acuuracy=± 2 degrees
A_polar(x,y) angle returned is in centidegrees: 0..36000
putframe(nr) dump window into the file"frame.%6d" , nr
getframe(nr) read from the file"frame.%6d" , nr
setcmap(i, r,g,b) write ith value in colormap
getcmap(i, r,g,b) readith value in colormap
redcmap(i, z)
grncmap(), blucmap()___
sin(angle), cos(angle) returns 0..10,000,anglein degrees : 0..360
Sin(angle), Cos(angle) same but expectsanglein centidegrees: 0..36000
atan(x, y) arc-tangent ofy/x, returns angle in degrees: 0..360
exp(a) as advertised
log(a),log10(a) returns 1024*result
sqrt(a) integer square root ofa
pow(a,b) a to the powerb
rand() returns a random integerr: 0fr<32768.___

Table 2.Builtin Procedures

